miércoles, 28 de mayo de 2008

TERMODINAMICA

Introduccion:
Como muchas disciplinas, la
termodinámica surge de los procedimientos empíricos que llevaron a la construcción de elementos que terminaron siendo muy útiles para el desarrollo de la vida del hombre.
Creemos que la
termodinámica es un caso muy especial debido a que sus inicios se pierden en la noche de los tiempos mientras que en la actualidad los estudios sobre el perfeccionamiento de las máquinas térmicas siguen siendo de especial importancia, mas aun si tomamos en cuenta la importancia que revisten temas de tanta actualidad como la contaminación.
El origen fué sin lugar a dudas la curiosidad que despertara el
movimiento producido por la energía del vapor de agua.
Su
desarrollo fué tomando como objetivo principal el perfeccionamiento de las tecnologias aplicadas con el fin de hacer mas facil la vida del hombre, reemplazando el trabajo manual por la máquina que facilitaba su realización y lograba mayor rapidez, estos avances que gravitaban directamente en la economía, por ello el inicio se encuentra en el bombeo de aguas del interior de las minas y el transporte.
Mas tarde se intensificaron los esfuerzos por lograr el máximo de rendimiento lo que llevó a la necesidad de lograr un
conocimiento profundo y acabado de las leyes y principios que regian las operaciones realizadas con el vapor.
El campo de la
termodinámica y su fuente primitiva de recursos se amplía en la medida en que se incorporan nuevas áreas como las referentes a los motores de combustión interna y ultimamente los cohetes. La construcción de grandes calderas para producir enormes cantidades de trabajo marca tambien la actualidad de la importancia del binomio máquinas térmicas-termodinámica.

La termodinámica (del griego θερμo-, termo, que significa "calor" [1] y δύναμις, dinámico, que significa "fuerza" [2] ) es una rama de la física que estudia los efectos de los cambios de la temperatura, presión y volumen de los sistemas físicos a un nivel macroscópico. Aproximadamente, calor significa "energía en tránsito" y dinámica se refiere al "movimiento", por lo que, en esencia, la termodinámica estudia la circulación de la energía y cómo la energía infunde movimiento. Históricamente, la termodinámica se desarrolló a partir de la necesidad de aumentar la eficiencia de las primeras máquinas de vapor.
El punto de partida para la mayor parte de las consideraciones termodinámicas son las leyes de la termodinámica, que postulan que la energía puede ser intercambiada entre sistemas físicos en forma de calor o
trabajo. También se postula la existencia de una magnitud llamada entropía, que puede ser definida para cualquier sistema. En la termodinámica se estudian y clasifican las interacciones entre diversos sistemas, lo que lleva a definir conceptos como sistema termodinámico y su contorno. Un sistema termodinámico se caracteriza por sus propiedades, relacionadas entre sí mediante las ecuaciones de estado. Éstas se pueden combinar para expresar la energía interna y los potenciales termodinámicos, útiles para determinar las condiciones de equilibrio entre sistemas y los procesos espontáneos.
Con estas herramientas, la termodinámica describe cómo los sistemas responden a los cambios en su entorno. Esto se puede aplicar a una amplia variedad de temas de
ciencia e ingeniería, tales como motores, transiciones de fase, reacciones químicas, fenómenos de transporte, e incluso agujeros negros. Los resultados de la termodinámica son esenciales para otros campos de la física y la química, ingeniería química, ingeniería aeroespacial, ingeniería mecánica, biología celular, ingeniería biomédica, y la ciencia de materiales por nombrar algunos.


Leyes de la termodinámica


Primera ley de la termodinámica

También conocido como principio de conservación de la energía para la termodinámica, establece que si se realiza trabajo sobre un sistema o bien éste intercambia calor con otro, la energía interna del sistema cambiará. Visto de otra forma, esta ley permite definir el calor como la energía necesaria que debe intercambiar el sistema para compensar las diferencias entre trabajo y energía interna. Fue propuesta por Antoine Lavoisier.

La ecuación general de la conservación de la energía es la siguiente:


Eentra − Esale = ΔEsistema
Que aplicada a la termodinámica teniendo en cuenta el
criterio de signos termodinámico, queda de la forma:
Segunda ley de la termodinámica

Artículo principal:
Segunda ley de la termodinámica

Esta ley regula la dirección en la que deben llevarse a cabo los procesos termodinámicos y, por lo tanto, la imposibilidad de que ocurran en el sentido contrario (por ejemplo, que una mancha de tinta dispersada en el agua pueda volver a concentrase en un pequeño volumen). También establece, en algunos casos, la imposibilidad de convertir completamente toda la energía de un tipo en otro sin pérdidas. De esta forma, La Segunda ley impone restricciones para las transferencias de energía que hipotéticamente pudieran llevarse a cabo teniendo en cuenta sólo el Primer Principio. Esta ley apoya todo su contenido aceptando la existencia de una magnitud física llamada entropía tal que, para un sistema aislado (que no intercambia materia ni energía con su entorno), la variación de la entropía siempre debe ser mayor que cero.
Debido a esta ley también se tiene que el flujo espontáneo de calor siempre es unidireccional, desde los cuerpos a temperatura más alta a aquellos de temperatura más baja.
Existen numerosos enunciados equivalentes para definir este principio, destacándose el de Clausius y el de Kelvin.
Enunciado de Clausius


Diagrama del ciclo de Carnot en función de la presión y el volumen.
En palabras de
Sears es: " No es posible ningún proceso cuyo único resultado sea la extracción de calor de un recipiente a una cierta temperatura y la absorción de una cantidad igual de calor por un recipiente a temperatura más elevada".
Enunciado de Kelvin
No existe ningún dispositivo que, operando por
ciclos, absorba calor de una única fuente y lo convierta íntegramente en trabajo.
Otra interpretación
Es imposible construir una máquina térmica cíclica que transforme calor en trabajo sin aumentar la energía termodinámica del ambiente. Debido a esto podemos concluir que el rendimiento energético de una máquina térmica cíclica que convierte calor en trabajo siempre será menor a la unidad y ésta estará más próxima a la unidad cuanto mayor sea el rendimiento energético de la misma. Es decir, mientras mayor sea el rendimiento energético de una máquina térmica, menor será el impacto en el ambiente, y viceversa.
Tercera ley de la termodinámica
Artículo principal:
Tercera ley de la termodinámica
La Tercera de las leyes de la termodinámica, propuesto por Walther Nernst, afirma que es imposible alcanzar una temperatura igual al cero absoluto mediante un número finito de procesos físicos. Puede formularse también como que a medida que un sistema dado se aproxima al cero absoluto, su entropía tiende a un valor constante específico. La entropía de los sólidos cristalinos puros puede considerarse cero bajo temperaturas iguales al cero absoluto. No es una noción exigida por la Termodinámica clásica, así que es probablemente inapropiado tratarlo de “ley”.
Es importante recordar que los principios o leyes de la Termodinámica son sólo generalizaciones estadísticas, válidas siempre para los sistemas macroscópicos, pero inaplicables a nivel cuántico. El
demonio de Maxwell ejemplifica cómo puede concebirse un sistema cuántico que rompa las leyes de la Termodinámica.
Asimismo, cabe destacar que el primer principio, el de conservación de la energía, es la más sólida y universal de las leyes de la naturaleza descubiertas hasta ahora por la ciencia.
Ley cero de la termodinámica
El
equilibrio termodinámico de un sistema se define como la condición del mismo en el cual las variables empíricas usadas para definir un estado del sistema (presión, volumen, campo eléctrico, polarización, magnetización, tensión lineal, tensión superficial, entre otras) no son dependientes del tiempo. A dichas variables empíricas (experimentales) de un sistema se les conoce como coordenadas termodinámicas del sistema.
A este principio se le llama del equilibrio termodinámico. Si dos sistemas A y B están en equilibrio termodinámico, y B está en equilibrio termodinámico con un tercer sistema C, entonces A y C están a su vez en equilibrio termodinámico. Este principio es fundamental, aun siendo ampliamente aceptado, no fue formulado formalmente hasta después de haberse enunciado las otras tres leyes. De ahí que recibe la posición 0.

No hay comentarios: